A Quantum Analog of the Poincare–birkhoff–witt Theorem
نویسنده
چکیده
We reduce the basis construction problem for Hopf algebras generated by skew-primitive semi-invariants to a study of special elements, called “super-letters,” which are defined by Shirshov standard words. In this way we show that above Hopf algebras always have sets of PBW-generators (“hard” super-letters). It is shown also that these Hopf algebras having not more than finitely many “hard” super-letters share some of the properties of universal enveloping algebras of finite-dimensional Lie algebras. The background for the proofs is the construction of a filtration such that the associated graded algebra is obtained by iterating the skew polynomials construction, possibly followed with factorization.
منابع مشابه
M ar 2 00 5 ROTA - BAXTER ALGEBRAS , DENDRIFORM ALGEBRAS AND POINCARÉ - BIRKHOFF - WITT THEOREM
Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arised in connection with the work of Connes and Kreimer on t...
متن کامل2 00 5 Rota - Baxter Algebras , Dendriform Algebras and Poincaré - Birkhoff - Witt Theorem
Rota-Baxter algebras appeared in both the physics and mathematics literature. It is of great interest to have a simple construction of the free object of this algebraic structure. For example, free commutative Rota-Baxter algebras relate to double shuffle relations for multiple zeta values. The interest in the non-commutative setting arose in connection with the work of Connes and Kreimer on th...
متن کاملA Poincaré-birkhoff-witt Theorem for Generalized Lie Color Algebras
A proof of Poincaré-Birkhoff-Witt theorem is given for a class of generalized Lie algebras closely related to the Gurevich S-Lie algebras. As concrete examples, we construct the positive (negative) parts of the quantized universal enveloping algebras of type An and Mp,q,ǫ(n, K), which is a nonstandard quantum deformation of GL(n). In particular, we get, for both algebras, a unified proof of the...
متن کاملA Poincare-birkhoff-witt Theorem for Quadratic Algebras with Group Actions
Braverman, Gaitsgory, Polishchuk, and Positselski gave necessary and sufficient conditions for a nonhomogeneous quadratic algebra to satisfy the Poincaré-Birkhoff-Witt property when its homogeneous version is Koszul. We widen their viewpoint and consider a quotient of an algebra that is free over some (not necessarily semisimple) subalgebra. We show that their theorem holds under a weaker hypot...
متن کاملThe Kontsevich Integral of the Unknot
We mix together the Kontsevich integral, chord diagrams, Chinese characters, the Reshetikhin-Turaev knot invariants, the Poincare-Birkhoff-Witt theorem, the HarishChandra isomorphism, the Duflo isomorphism, the Kirillov formula and some minor Fourieranalysis computations. This enables us to make an intelligent guess for an exact formula for the Kontsevich integral of the unknot, and to conjectu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999